Studies of Force Induced Changes in Single Molecule Systems

- Prentiss Group
- Nelson Group at Harvard
- Whitesides Group
Why do Single Molecule Experiments?

- Bulk measurements give only average values
  - Heterogeneities are masked
  - Intermediate states are difficult to detect
What sorts of Single Molecule Force Experiments are there?

- **Adhesion Measurements**
  - Use force to pull apart single molecule bonds
    - Ligand-Receptor Studies
    - DNA unzipping

- **Elasticity Experiments**
  - Use force to stretch single molecules
    - dsDNA and ssDNA stretching provides structure and free energy information

Receptor: A molecular structure or site on the surface or interior of a cell that binds with substances such as hormones, antigens, drugs, or neurotransmitters A molecular structure within a cell or on the surface characterised by selective binding of a specific substance and a specific physiologic effect that accompanies the binding, for example, cell surface receptors for peptide hormones, neurotransmitters, antigens, complement fragments and immunoglobulins and cytoplasmic receptors for steroid hormones.

2. A sensory nerve terminal that responds to stimuli of various kinds.

Ligand: An ion, a molecule, or a molecular group that binds to another chemical entity to form a larger complex Any molecule that binds to another, in normal usage a soluble molecule such as a hormone or neurotransmitter, that binds to a receptor. The decision as to which is the ligand and which the receptor is often a little arbitrary when the broader sense of receptor is used (where there is no implication of transduction of signal). In these cases it is probably a good rule to consider the ligand to be the smaller of the two thus in a lectin sugar interaction, the sugar would be the ligand (even though it is attached to a much larger molecule, recognition is of the saccharide).
Exerting Forces on Single Molecules
– Single Particle (Cell / Vesicle / Bead)

Meaningful data acquisition can be long and tedious since good statistics are required.
Adhesion Plays an Important Role in Biology

Adhesion in Pathogenesis

Viruses
Bacteria
Intracellular bacteria
and rickettsia
Some toxins (ricin, cholera)
Metastasis
Inflammation
Importance of Adhesion Studies

- Basic studies of adhesion provide understanding of mechanisms governing binding
- Can lead to therapeutic advances by adhesion inhibition or promotion
- Most studies are equilibrium studies of binding to surfaces, leaving out dynamics that may be crucial
  - surface flow measurements are difficult because of velocity uncertainty at surfaces
Types of Adhesion

• Non-biospecific
  – hydrophobic or electrostatic

• Biospecific and exclusively adhesive

• Bioespecific and functional
  – integrins to RGD or fibronectin
  – selectins binding to cadherins
Simplest Specific Adhesion View

• A pathogen (lock) selectively binds to a suitable receptor (correct key) on the surface of the cell, while not accepting incorrect binding site (wrong key)
• polyvalent binding is more specific
Hemagglutination Assay for Virus Inhibitor

Start with cells uniformly distributed in inverted conical cuvette

After gravity
Adhesion Can be Dynamic

White blood cells adhesion to blood vessel walls at onset of inflammation
Spontaneous Unbinding of Single Bonds Occurs

- polyvalent binding decreases unbinding probability by making deeper well
- if a single bond unbinds, other remaining bonds can hold pathogen to cell allowing rebind
Dynamical Control of Collisions Desirable

- AFM possible
- We choose optical tweezers

Optical Tweezers
Potential = - ∇ Intensity
= - ∇ | Electric Field |²
(static cling)

LIGHT
LENS
TRAPPED PARTICLE
LIGHT FOCUS
3D INTENSITY MAX
3D POTENTIAL MIN
Optical Tweezers are an Excellent Tool for Research on Adhesion

- Tweezers based manipulation can tailor the position, orientation, velocity, duration and force of a contact between surfaces
- Tweezers do not require that anything be attached to the cell being manipulated
- Tweezers can measure the force required to separate surfaces under controlled mechanical conditions
- Adhesion not previously considered for tweezer measurements because binding forces >> tweezer forces
  - breakthrough idea: tweezers do not have to separate bound particles, but just to distinguish bound from unbound
Optical Tweezers
Potential = - $\alpha$ Intensity
= - $\beta$ $|$ Electric Field $|^2$

1. Establish an Electric Field Maximum by focusing a light beam

2. Particles will be attracted to the light beam focus where the Electric Field is a Maximum

3. Particles can be manipulated by moving focus of the light beam
First Optical Tweezer

Observation of a single-beam gradient force optical trap for dielectric particles
Measurements of Adhesion Between a blood cell or bacteria and an artificial surface

- Used to measure pathogen bonding
- Dynamics of binding can be probed
- Used to measure inhibitors for pathogen binding
First Optical Tweezer Based Adhesion Experiments
(CFLD by Phillips and Whitesides Groups)

- Multi-beam optical tweezer controls position of two or more particles
- Adhesion between particles is measured by determining the tweezer force required to pull the objects apart.
- First experiment was on adhesion of influenza virus to red blood cell
- Studied effects of inhibitors
  - important for drug development where effective inhibition at lowest possible concentration is desired
- Tweezers too weak to pull apart spheres bound to cells by virus, but easily pull apart unbound cells and spheres
Dual Optical Tweezers (DOT) For Biochem

Start with virus coated sphere and cell in separate traps

Time=0

coated microsphere  erythrocyte

Move 2 traps together so sphere and cell collide

Move 2 traps apart, if they remain together they have bound

Adhesion  No Adhesion
OPTCOL to Measure Inhibition of Adhesion by Soluble Carbohydrates

Pre-Collision with carbohydrate in solution coated microsphere

Carbohydrate on Cell Surface

erythocyte

Post-Collision inhibited adhesion coated microsphere

Carbohydrate on Cell Surface

erythocyte
OPTCOL to Measure Inhibition of Adhesion by Soluble Carbohydrates

Pre-Collision with less carbohydrate in solution coated microsphere
Carbohydrate on Cell Surface erythrocyte

Post-Collision
adhesion coated microsphere
Carbohydrate on Cell Surface erythrocyte
Dual Tweezer Controlled Collision

Inhibited Adhesion

coated sphere
erythrocyte

Adhesion

coated sphere
erythrocyte

Ten trials. Adhesion in <3 is counted as binding, no adhesion > 10 no binding. 3-10 rare.
Results of First Tweezers Adhesion Experiment

- Dot used to measure effectiveness of viral anti-binding agents
  - Passivation of bead surface vastly increases specificity of test
  - 50% adhesion point matches standard assay in range where standard is valid (>10^{-9} molar)
  - Extends dynamic range 2 orders of magnitude beyond standard test (10^{-11} to 10^{-3} molar)
  - Agents indistinguishable in standard assay shown to have orders of magnitude different effectiveness
Measurements of Cell Binding to Pathogen Surrogates

• Use a molecule with known structure to probe binding
• Provide detailed comparison of theory and experiment
Second Model System
WGA and Erythrocyte

• Wheat Germ Agglutinin
  – well characterized dimeric lectin that binds to GlcNAc and NeuAc with four binding sites

Figure 11. Ribbon representation of wheat germ agglutinin (PDB entry WGC). The sulfur atoms of the disulfide bridges are shown as small balls.

Figure 12. Schematic representation of the wheat germ agglutinin dimers. Domains are shown as large shadowed circles and labeled A1, B1, C1, D1, etc. The position of the molecular 2-fold axis is indicated by an arrow. Broken arrows represent the two types of pseudo-2-fold axes generated in the dimer interface between domains of different dimers. "S" refers to the aromatic carbohydrate binding pocket. (Reprinted by permission from ref 51)
Inhibition of WGA binding by Soluble Sugar

Shows binding is specific
Measures inhibitor effectiveness
Sialic Acid also inhibits
Glucose does not

- GlcNAc
- (GlcNAc)$_2$
- (GlcNAc)$_4$
WGA binding results

- Uncoated spheres stick to each other and to erythrocytes
  - BSA blocks uncoated adhesion
  - Not biospecific
    » electrostatic or hydrophobic
- EG coated spheres do not stick to each other or to cells
- In the absence of inhibitor, WGA coated spheres always stick to cells and could not be removed with tweezers
- GlcNac and sialic acid in solution inhibit the binding
  - inhibition concentrations for 50 % sticking are similar to concentrations required to inhibit hemagglutination
- Other soluble carbohydrates do not block binding
  - glucose had no effect
- No Spontaneous unbonding observed
Bacteria Binding to an Artificial Surface

• Can precisely control surface chemistry using self-assembled monolayers

• Time dependent responses dominated by bacterial changes rather than surface changes
  – over long times remodeling of surface is still an issue

• Model system: E. coli specifically binding to mannose
  – clinical sample
Why Study adhesion to Sugars?

Cells are like peanut m&m’s

Sugar coating Fats and lipids

Adhesion to cells is frequently really adhesion to sugars on the outside of the cells. Sugars can encode far more info than amino acids, so cells are often identified by the sugars on their surfaces.
Microbial Infection begins with adhesion to a sugar

Influenza virus - “Flu”
HIV - AIDS
Helicobacter pylori - Ulcers
Escherichia coli - Meningitis
Pseudomonas aeruginosa - Pneumonia
Trypanosomes - African sleeping sickness
Plasmodium falciparum - Malaria

Chronic inflammatory disease begins with adhesion to a sugar

Diabetes
Multiple sclerosis
Rheumatoid arthritis
Inflammatory bowel disease
Psoriasis
Transplant rejection
Asthma
Inhibition of Adhesion with minimal dose can be therapeutically important

- Adhesion minimization can prevent infection and inflammation
- Smallest possible doses reduce side effects
- Lectins are proteins that bind mono- and oligosaccharides reversibly and with high specificity
  - not catalysts
  - not products of immune response
- Lectins frequently cause specific adhesion
- Search for inhibitors that bind to the lectins preventing pathogens from binding to cells
- Need quantitative method of evaluating inhibitors
  - measure equilibrium binding in solution
  - no dynamical information
Tweezer Based Measurements of E. Coli Binding
(Michael Liang and Stephen Smith)

- **Goal**: Measuring the specific binding of E.coli to mannose
- **Strategy**: Control the density of mannose on a surface using self-assembled monolayers (SAMs)
Apparatus Detail

Controlled Surface Detail of slide coated with mixed SAM

Diagram:
- Glass
- Ti
- Au
- SAM
- Mannose
- Cover Slip
- Sample
- Trapping Beam
- Index Matching Oil
- Objective 100x
- Cover Slip
Initial Steps in Adhesion Measurement

- Initial Removal
- Free
- Readhere
Steps in Adhesion Measurement

Place Low Power Trap Below Adhering Bacteria

Sugar Coated Surface

Trap Center

Tweezers Force

Increase Trap Strength Until Bacteria Unbinds because Tweezer Force = Bond Rupture Force

Sugar Coated Surface

Trap Center

No Net Average Tweezers Force
Effect of Multiple Binding Sites on Binding Force

Single site

Binding force = N single bond for N on single site
Binding force < N single bond for multiple site

Multiple sites

Continuum of powers above minimum
Experimental Results
Show 2 Bonds on 1 Site

E. coli Bond Rupture Force

Putative E. coli pilus binding site
Putative E. coli binding site

Man $\alpha$1-3 Man $\beta$1-4 GlcNAc

Number of Events (normalized)

Force (arbitrary units)

Mannose percentage in SAM

10%

0.1%

0.0001%
Tweezer Based Measurements of E. Coli Binding

• First observation of unbinding with optical tweezers
• Demonstrated quantized specific binding of E. Coli to surfaces
• Measured effects of inhibitors on binding force
  – some inhibitors INCREASED strength of individual bonds
• Found that each pili had at most two binding sites
  – consistent with literature of dimer at end of pili with only 1 dimer/pili available
• Found negligible probability of spontaneous release of doubly bound E.coli
• Observed spontaneous release of singly bound E. coli
  – can measure time between unbinding events
• Mannose in solutions will cause bound E.coli to unbind even without tweezers
Single Molecule Binding of Ligand/Receptor Pairs isolated on artificial surfaces

- Determine the energy landscape of the binding potential
- Measure the dynamics of binding and unbinding
- Measure the effects of inhibitors
- Measure steric effects
- Measure effects due to the presence of macroscopic surfaces

Receptor: A molecular structure or site on the surface or interior of a cell that binds with substances such as hormones, antigens, drugs, or neurotransmitters. A molecular structure within a cell or on the surface characterised by selective binding of a specific substance and a specific physiologic effect that accompanies the binding, for example, cell surface receptors for peptide hormones, neurotransmitters, antigens, complement fragments and immunoglobulins and cytoplasmic receptors for steroid hormones.

2. A sensory nerve terminal that responds to stimuli of various kinds.

Ligand: An ion, a molecule, or a molecular group that binds to another chemical entity to form a larger complex. Any molecule that binds to another, in normal usage a soluble molecule such as a hormone or neurotransmitter, that binds to a receptor. The decision as to which is the ligand and which the receptor is often a little arbitrary when the broader sense of receptor is used (where there is no implication of transduction of signal). In these cases it is probably a good rule to consider the ligand to be the smaller of the two (thus in a lectin sugar interaction, the sugar would be the ligand even though it is attached to a much larger molecule, recognition is of the saccharide).
Quantitative Information

$K_{\text{on}}$ $K_{\text{off}}$

Law of Mass action

According to the law of mass action, the reversible reaction $A + B \rightleftharpoons AB$ can be described as two reactions that occur at characteristic rates that depend on the energy landscape of the bond, reactant concentration, and temperature only.

\[
d[AB]/dt = k_{\text{on}} [A] [B] \\
d[A]/dt = d[B]/dt = k_{\text{off}} [AB]
\]

where $k_{\text{on}}$ and $k_{\text{off}}$ are constant functions of temperature.

Kon and Koff in terms of Free Energy Difference $\Delta \mathcal{G}_{\text{on}}$ $\Delta \mathcal{G}_{\text{off}}$

\[
k_{\text{on}} = v_{\text{on}} \exp(-\Delta \mathcal{G}_{\text{on}} / k_B T) \\
k_{\text{off}} = v_{\text{off}} \exp(-\Delta \mathcal{G}_{\text{off}} / k_B T)
\]
Effect of Applied Force

According to the Bell model,

\[ W = -F_{\text{magnetic}} \cdot d \]
\[ G(F) = G(0) - F \cdot x \]

where \( x \) is the reaction coordinate, which, in a simple model, is roughly the distance that A and B must be separated to break the bond.

\[ k_{\text{off}} (F) = k_{\text{off}} (0) \exp(F \cdot x/k_b \cdot T) \]
Measuring $K_{\text{off}}(0)$ and $x$ using Applied Force

- The off rate, $k_{\text{off}}(F)$ is measured by examining the number of unbroken bonds as a function of time:

  $$N(t) = N(0) \exp(-t \ k_{\text{off}}(F))$$

  - By measuring the $k_{\text{off}}(F)$ rate at various forces, it is possible to extrapolate the $k_{\text{off}}$ rate at zero force ($k_{\text{off}}(0)$ or $k_{\text{off}}$ in solution) as well as to calculate the unbinding reaction distance ($x$) and the transition state barrier ($DG$). The graph of $F$ vs $k_{\text{off}}(F)$ can be fitted to the decay equation:

  $$k_{\text{off}}(F) = k_{\text{off}}(0) \exp(F \ x/k_b \ T)$$

- If more than one type of bond is present, or there is more than one minima in the potential then multiple decay times will be present, each of which can be treated as described above.
AFM Results
(forces depends on time)

\[ k_{\text{off}} = v_{\text{off}} \exp\left(-\frac{G_{\text{off}}}{k_B T}\right) \]

\[ k_{\text{off}}(F) = k_{\text{off}}(0) \exp\left(F \frac{x}{k_B T}\right) \]

Measure rupture force and distance

Energy Landscape of Streptavidin—Biotin Complexes

![Energy Landscape Diagram]

A

Approach

Retraction

Force

Piezo displacement

100 pN

25 nm
AFM Results

distribution of rupture forces as a function of loading rate

198 pN/sec  2300 pN/sec
AFM Results

evidence for an intermediate state

**FIGURE 4:** Conceptual energy landscapes of the (A) streptavidin–biotin interaction and the (B) W120F–biotin interaction.

**FIGURE 3:** Loading rate dependence of the rupture force in the unbinding of the streptavidin–biotin (○), avidin–biotin (□), and W120F–biotin (●). Both regimes in force spectra were fitted to the Bell model. Standard errors of all data points were less than 5% of the mean value. Representative error bars were placed on selected data points.
Ligand-Receptor Binding using Magnetic Tweezers at constant force

- Single molecule measurements of ligand-receptor interactions.
- Compare with other techniques (relate single molecule results to bulk properties).
- Probe energy landscape.
- Surface confined molecules.
- Good statistics possible with parallel measurements.
Magnetic Crystals of Paramagnetic Beads
Energy = |m||B|

Beads are attracted to B field MAXIMUM
Beads Attached to a surface are pulled away, exerting a force on the molecule attaching the bead to the surface
Magnetic Tweezer Based Adhesion Measurements

Experiment:
Allow the beads to contact the surface for 30''.
Apply a low force ~ 5-10 pN
Apply force required to unbind ligand-receptor pairs.
Non-Specific Binding

- A big issue in early experiments
- A big problem for bead based assays
- Can combat with appropriate surface coatings
- Inert to protein binding not the same as inert to bead binding
## Different “Inert” Surfaces

<table>
<thead>
<tr>
<th>SURFACE</th>
<th>BEADS</th>
<th>SOLUTION</th>
<th>LOW FORCE</th>
<th>HIGH FORCE</th>
<th>CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA on PVC</td>
<td>Streptavidin</td>
<td>Buffer PBS</td>
<td>40-60 % beads remaining</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>BSA on PVC or PVC</td>
<td>Streptavidin</td>
<td>Buffer PBS / Tween 20, 0.05%</td>
<td>&lt; 5 % beads remaining</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>Biotinylated-BSA on PVC</td>
<td>Streptavidin</td>
<td>Buffer PBS / Tween 20, 0.05 %</td>
<td>90 % beads</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Biotinylated-BSA on PVC and incubated with streptavidin</td>
<td>Streptavidin and incubated with biotin 10 mM – 1 µM</td>
<td>Buffer PBS / Tween 20, 0.05 %</td>
<td>&lt; 5 % beads remaining</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>BSA : Biotinylated-BSA: 500 :1, on PVC</td>
<td>Streptavidin</td>
<td>Buffer PBS / Tween 0.05 %</td>
<td>&lt; 15 % beads remaining</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>Streptavidin on PVC or PVC</td>
<td>Biotin PEO- or biotinPEO + streptavidin</td>
<td>Buffer PBS / Tween 0.05% or + biotin 10 mM</td>
<td>&lt; 5 % beads remaining</td>
<td>(-)</td>
<td></td>
</tr>
</tbody>
</table>
Results

Avidin

Streptavidin
These results: avidin $k_{\text{off}} = 9.10^{-5}$, $x = 0.36$ nm; streptavidin $k_{\text{off}} = 1.4.10^{-4}$, $x = 0.38$ nm.

BFP (Evans, 1999): avidin-biotin 38 to 85 pN regime: $x = 0.3$ nm.

Results for CA on SAMs also showed higher $k_{\text{off}}$ values for surface attached ligand-receptor complexes (Whitesides JACS 117, 12009).
Guaranteed Single Molecule

Use a long spacer with only one single binding site
Long linkers on both sides allow better comparison with solution values
Summary of Ligand-Receptor Binding using Magnetic Tweezers

Accomplishments

✓ Surface: designed to reduce non-specific interactions significantly (<1%).

✓ Interaction studied: biotin-avidin (streptavidin).

✓ Calculation of parameters at constant force: reaction off rate, unbinding reaction distance.

Future Work

• Include tethers of different lengths to approach solution conditions.

• Other surfaces: gold.

• Study other ligand-receptor couples such as sulfonamides-carbonic anhydrase or ligand (receptors) on cell surfaces.
Unzipping Lambda phage dsDNA using magnetic tweezers
What is the physics?

Unzipping occurs when the free energy of the single stranded is lower than the free energy of the double stranded

Contribution due to entropy difference favors single stranded

Contribution do to enthalpy difference favors double stranded

Applied force aids separation

\[ G = g_b - 2g_u (F) \]
Observations of the Sequence Dependence of dsDNA unzipping

Bead Positions vs Time

Fully unzipped

Fully zipped

30 µm
Comparison with Theory

Averaged Potential Theory did not work well
Monte-Carlo simulation is a good match

Accomplishments

✓ Pauses in force-induced unzipping of double stranded were successfully predicted by Monte Carlo, but not by coarse graining

Future Work

• Investigate interactions beyond nearest neighbors
  • Explore the kinetics of unzipping through simulations

stc: 58
Temperature Dependence of Unzipping

\[ \Delta G = \Delta H - T \Delta S \]

unzipping should get easier at higher temperatures

DH and DS assumed independent of temperature

Present results as a phase diagram in the force temperature plane

at zero force the transition temperature should be the melting temperature

Allows comparison of theory with experiment

temperature dependence important for DNA chips, PCR, and projection of melting data to in vivo conditions
Phase Diagram of DNA Unzipping

- Surprises at high and low temperature, dependence on thermal history
New Biophysics?

- In the high temp low force regime effects of bubbles and hairpins have been ignored
  - detailed simulation by R. Bonshudt suggests hairpins do not play a role
  - Libchaber data supports bubbles, but this is not yet widely held

- In low temp regime a structural change appears to take place
  - supported by CD data
  - supported by force vs extension data
  - supported by history dependence
  - consistent with previous short sequence data on B’ to B transition
More new biophysics

• Unzipping force is buffer insensitive from 20-40 C
  – stretching curves change drastically
  – melting temperature changes of 30 C

• Biological robustness makes sense, detailed mechanism still not understood
Summary Phase Diagram of DNA Unzipping

Accomplishments

✓ Between 24-35°C good projections from bulk thermodynamic using nearest neighbor, insensitive to buffer
✓ Above 35°C unzipping force depends on buffer and bubbles in the dsDNA may be important
✓ Below 24°C dsDNA conformational changes may play a role
✓ Demonstrate that dsDNA parameters depend on previous history of the sample

Future Work

• Evaluate effect of sequence dependent conformation (e.g. B’ or A tract)

• Improve predictive models for PCR primers

• Develop rapid lower temperature PCR

• Understand history dependence of dsDNA parameters
Magnetic Field Induced Lattices

Goal: Assemble small particles into an ordered hexagonal lattice

Strategy: Use a magnetic field gradient to attract paramagnetic particles to a center, and dipole/dipole interaction to keep them slightly separated.

The beads form an ordered crystal with a spacing increasing as $|\mathbf{B}|/(\text{grad}|\mathbf{B}|)$.
It is often Desirable to Join Long DNA Strands

Random walk is not sufficient to bring ends together increasing concentration makes a gel the rate of end attachment DECREASES
Lattice Based Assembly

**Goal:** Attach two separate double strands of DNA to form one longer double strand, and detect successful assembly

**Strategy:** Attach the DNA to magnetic beads, form beads in crystal, detect DNA attachment as crystal defects

Random walk is not sufficient to bring ends together increasing concentration makes a gel the rate of end attachment DECREASES

DNA concentration is low, but probability of joining ends is high.
Examples
Join DNA Ends by Bringing Beads Together

DNA concentration is low, but probability of joining ends is high.
Magnetic tweezers

**Self-Assembled Crystal**

In the presence of a vertically oriented magnetic field, micron-sized super-paramagnetic beads form a 2-Dimensional crystal at the surface of a droplet of water. The spacing between beads can be adjusted by varying the magnetic field strength. We image the crystal using video microscopy.

**Binding Properties of Large Molecules**

In order to study the properties of long polymers (such as DNA), we chemically attach the molecules to the beads. Then, by controlling the crystal spacing, we control the time and distance at which the polymers interact with each other and with other beads.
Beads bound to each other by a polymer show up as defects in the crystal lattice. Using digital image processing, we can then measure the dynamics of the bound beads under various conditions (crystal spacing, temperature, fluid flow), and extract useful information about the polymer that connects them.
Results of Lattice Based Measurements

- Most probable binding difference = radius of gyration
- Highly peaked distribution
Adhesion For Microfabrication

- Biospecific interactions can be used to build structures from combinations of cells and non-living material
- Useful for creating and studying bio-materials interfaces
- Methods for creating microstructures that can be disassembled at will
Macrofabrication: Strategies for Microfabrication
Essential Research Areas for Developing Functional Devices with Biological Components

Materials for Controlling the Interactions of Cells and Proteins with Synthetic Surfaces

Strategies to Control the Environment of Cells in 2D and 3D Arrays and Assemblies

Strategies to Detect and Transduce Biological Signals and Responses
Multiple-Beam Optical Tweezer to Orient Erγ
Erythrocytes and Lymphocytes in One Assembly
Light-Driven Microfabrication using WGA coated Spheres

A) Attach sphere to erythrocyte

B) Attach erythrocyte and sphere to growing assembly that rests on the surface of the cover slip

C) Iterate to generate 2D and 3D arrays
Optical Tweezers, Protein-Coated Microspheres, and Erythrocytes in Microfabrication

- Polystyrene Microsphere
- Glass Cover Slip
- Index Matching Oil
- Microscope Objective
- Laser Beam in Sharp Focus
- Aqueous Suspension

- Wheat Germ Agglutinin (WGA)
- Protein-Coated Microsphere
- Cell Surface Carbohydrate (GlcNAc, NeuAc)
- Erythrocyte
Fabrication of 2D Arrays of Erythrocytes
3D Fabrication: A Tetrahedral Array of Erythrocytes
3D Fabrication: Perpendicular Planes

Vantage Point

Focal Plane at the Base
Ligand-Receptor Binding using Magnetic Tweezers

Objectives

- Single molecule measurements of ligand-receptor interactions
- Relate single molecule results to bulk properties
- Evaluate effects of constraints due to surface
- Discriminate non-specific vs specific binding

Approach

- Single molecule measurements of ligand-receptor interactions
- Relate single molecule results to bulk properties
- Evaluate effects of constraints due to surface
- Discriminate non-specific vs specific binding

Accomplishments

- Surface designed to reduce non-specific interactions significantly.
- Non-specific vs specific discrimination enhanced by applied force (NRL idea also)
- Interaction studied: biotin-avidin (streptavidin).
- Calculation of parameters at constant force: reaction off rate, unbinding reaction distance.

Future Work

- Study other ligand-receptor couples such as sulfonamides-carbonic anhydrase or ligand (receptors) on cell surfaces.
- Investigate inhibitor dynamics
- Include tethers of different lengths to approach solution conditions.
- Develop efficient fieldable detectors for fast results in unfiltered samples.
## Magnetic Cell Organization

### Objectives

- Use magnetic fields to organize and self-assemble cellular structures.
- Magnetize cells through ingestion of small (20nm) paramagnetic beads.

### Approach

- Self-assembled pillars

### Accomplishments

- Successful magnetization of cells
- Assembly of planar cell configurations in solution, single cell layer possible
- Magnetic beads assembled in 3-D structures.

### Future Work

- More complex self-assembled shapes, such as 3-D matrix of cell stacks
- Assembly in growth media solutions
- Allow cellular assemblies to grow into tissue

---

*Ingber and Prentiss Groups*
## Phase Diagram of DNA Unzipping

**Ingber, Nelson, Prentiss Groups**

### Objectives

- Separate double stranded DNA by applying a constant force at temperatures between 15°C to 50°C
- Validate existing theoretical models of dsDNA binding
- Evaluate temperature dependence of the free energy of dsDNA

### Approach

![Graph showing phase diagram of DNA unzipping](image)

### Accomplishments

- Between 24-35°C good projections from bulk thermodynamic using nearest neighbor, insensitive to buffer
- Above 35°C unzipping force depends on buffer and bubbles in the dsDNA may be important
- Below 24°C dsDNA conformational changes may play a role
- Demonstrate that dsDNA parameters depend on previous history of the sample

### Future Work

- Evaluate effect of sequence dependent conformation (e.g. B’ or A tract)
- Improve predictive models for PCR primers
- Develop rapid lower temperature PCR
- Understand history dependence of dsDNA parameters
## Large force over small Area

**Objectives**

- Exert large force on single receptors on living cells

---

**Approach**

- Fabricated functionalizable nanostructures on larger spheres
- Used phage dsDNA to transfer force to a single molecule on a surface
- Developed a flow cell to exert >10nN force on a bead attached to a surface via phage (at >nN colloid may be required)

---

**Accomplishments**

- Use on living cells

---

**Future Work**

- Use on living cells
Ligand-Receptor Binding using Magnetic Tweezers

Objectives
- Single molecule measurements of ligand-receptor interactions
- Relate single molecule results to bulk properties
- Evaluate effects of constraints due to surface
- Discriminate non-specific vs specific binding

Approach
- Single molecule measurements of ligand-receptor interactions
- Relate single molecule results to bulk properties
- Evaluate effects of constraints due to surface
- Discriminate non-specific vs specific binding

Accomplishments
- Surface designed to reduce non-specific interactions significantly.
- Non-specific vs specific discrimination enhanced by applied force (NRL idea also)
- Interaction studied: biotin-avidin (streptavidin).
- Calculation of parameters at constant force: reaction off rate, unbinding reaction distance.

Future Work
- Study other ligand-receptor couples such as sulfonamides-carbonic anhydrase or ligand (receptors) on cell surfaces.
- Investigate inhibitor dynamics
- Include tethers of different lengths to approach solution conditions.
- Develop efficient fieldable detectors for fast results in unfiltered samples.

Prentiss and Whitesides Groups
Magnetic Cell Organization

Objectives

• Use magnetic fields to organize and self-assemble cellular structures.

• Magnetize cells through ingestion of small (20nm) paramagnetic beads

Approach

Self-assembled pillars

Accomplishments

✓ Successful magnetization of cells

✓ Assembly of planar cell configurations in solution, single cell layer possible

✓ Magnetic beads assembled in 3-D structures.

Future Work

• More complex self-assembled shapes, such as 3-D matrix of cell stacks

• Assembly in growth media solutions

• Allow cellular assemblies to grow into tissue
Sequence Dependence of dsDNA unzipping

**Objectives**

- Demonstrate that pauses in DNA unzipping are sequence dependent

**Accomplishments**

✓ Pauses in force-induced unzipping of double stranded were successfully predicted by Monte Carlo, but not by coarse graining

**Approach**

Investigate interactions beyond nearest neighbors

**Future Work**

- Explore the kinetics of unzipping through simulations

Ingber, Nelson, Prentiss Groups
## Large force over small Area

*Ingber, Prentiss, Whitesides, Xia Groups*

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Exert large force on single receptors on living cells</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Approach Diagram" /></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accomplishments</th>
<th>Future Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Fabricated functionalizable nanostructures on larger spheres</td>
<td>• Use on living cells</td>
</tr>
<tr>
<td>✓ Used <em>phage</em> dsDNA to transfer force to a single molecule on a surface</td>
<td></td>
</tr>
<tr>
<td>✓ Developed a flow cell to exert &gt;10nN force on a bead attached to a surface via <em>phage</em> (at &gt;nN colloid may be required)</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The diagrams and images are placeholders and should be replaced with actual visuals.
Gradients and Dipoles

Opposite and Equal Pull -> No Motion

time=0

time=T

Opposite and Unequal Pull -> Motion

time=0

time=T

stc: 90
Gradients and Dipoles II

Negative q in E

Positive q in E

Dipole
(Attached Negative and Positive q)

Opposite and Equal Pull -> No Motion
Gradients and Dipoles III

Uniform Field

Opposite and Equal Pull -> No Motion

Non-uniform Field

Opposite and Unequal Pull -> Motion toward Increasing Field

stc: 92
Static Cling Tweezers

Potential = - \frac{q}{\epsilon} | Electric Field |^2
same origin as optical tweezers potential

1. Establish an Electric Field Maximum at the comb by charging

2. Particles will be attracted to the comb where the electric field is a maximum and potential is a minimum

3. Particles at the potential minimum can be manipulated by moving the comb, even if they are too small to hold in a hand
Simple Tweezers

Telescope

Monitor

CCD

Laser

Microscope

Cost ~ $5k
Light Assisted Self-Assembly
(Patrycja Paruch)

• **Goal:** Deposited carbon nanotubes across a gap between two conductors for room temperature Single Electron Transistor

• **Strategy:** Use light force enhancement at conductor edge to attract nanotubes to gates

• **Achievements:** Deposited nanotubes by centering tweezer on the edge a conductor

![Image showing positions of focused laser spot, Gold Lines, and Carbon Nanotube]
Scaling Laws

• Ball bearings self assemble under gravity < 10 micron particles do not
• Depends on assumptions
• For constant magnetization
  – Surface B field \( \propto r \)
  – Field gradient is constant at the surface
  – Magnetic moment of bead a \( r^3 \)
  – External B field dipole a \( r^3 \)
  – Dipole/Dipole
Magnetic Crystals of Paramagnetic Beads

Energy = |m||B|

Beads are attracted to B field MAXIMUM
Magnetic Crystals of Paramagnetic Beads

Energy = $|m||B|$

Surface Tension Keeps Beads in the water, so the beads accumulate at the surface, at the points where $|B|$ is a maximum. If $B$ is perpendicular to the water surface, the dipole moments are parallel, so neighboring beads repel.
BSA modified with biotin on PVC (streptavidin (avidin) coated beads).

Beads modified with biotin (streptavidin (avidin) on PVC).

**EZ-Link™ Sulfo-NHS-LC-Biotin**

MW = 556.58
Spacer Arm = 22.4 Å

**EZ-Link® Biotin-LC-PEO-Am**
Spacer arm: 22.9Å

**Dynabeads® M-450**
Tosylactivated

- Hydrophobic bead.
- Surface tosyl groups.
- Bead diameter 4.5 μm.

- Direct covalent binding to primary amino- or sulfhydryl groups in proteins and peptides.
- No further surface activation required.
- Binding over night at neutral to high pH and high temperature.

Reaction of EZ-Link™ Sulfo-NHS-LC-Biotin with Protein
Conjugation of WGA to Polystyrene Microspheres

1. WGA, pH 8.1, 4 h
2. EG₃NH₂, pH 8.1, 0.5 h

Wheat Germ Agglutinin (WGA)
Higher forces: positive assays.

- Dissociation of specific bonds?

- Desorption from the surface (b-BSA)?

Avidin coated beads: no unbinding, even at highest forces probably multiple bonds but no desorption of biotinylated-BSA.

Avidin (streptavidin) experiments were repeated with free biotin: 0.01-0.1 nM.
$k_{\text{off}} = v_{\text{off}} \exp(-DG_i)\,$

$k_{\text{off}}(F) = k_{\text{off}}(0) \exp \left( \frac{F \chi}{k_B T} \right)$

**Figure 4:** Conceptual energy landscapes of the (A) streptavidin–biotin interaction and the (3) W120F–biotin interaction.

**Energy Landscape of Streptavidin–Biotin Complexes**

**Figure 2:** (A) Force vs displacement curves of the interaction between a streptavidin-functionalized tip and a biotinylated agarose bead. The measurements recorded for force on the AFM cantilever on approach and retraction of the cantilever from the agarose bead $F$ is the rupture force. $k_0$ is the slope of the force vs displacement curve. The measurement was carried out with a cantilever spring constant of 30 mN/m and a scan speed, $v_s$, of 600 nm/s. Each cantilever was individually calibrated by thermal fluctuations analysis to determine its spring constant. (B) Histogram of the adhesion force between a streptavidin tip and a biotin bead at loading rates of (B) 150 pN/s ($k_0 = 2.3$ mN/m and $v_s = 80$ nm/s) and (C) 2500 pN/s ($k_0 = 2.3$ mN/m and $v_s = 1$ nm/s). Both histograms were fitted to a Gaussian function. The centers of the force distribution (B) and (C) are 176 ± 2.3 (SEM) pN (C = 256) and 307 ± 5.8 (SEM) pN (N = 100), respectively. All AFM force measurements were carried out in PBS at 37 ± 1°C.

**Biochemistry, Vol. 39, No. 33, 2000 10221**

**Figure 3:** Loading rate dependence of the rupture force in the unbinding of the streptavidin–biotin (C), avidin–biotin (C), and W120F–biotin (C). Both regimes in force spectra were fitted to the Bell model. Standard errors of all data points were less than 3% of the mean value. Representative error bars were placed on selected data points.