Scanning Electron Microscopy (SEM)

David C. Bell

Center for Imaging and Mesoscale Structures

April 26, 2004

Basic Methods of Materials Analysis

- Look at the Material (Shiny or Dull?)
- Hold Material (Heavy of Light?)
- Taste Material (Surface Chemistry?)
- Bite Material (Ductile ?)
- Drop Test (Brittle ?)
- Put it in a Scanning Electron Microscope (SEM) !
- Other Methods

Large Number of Signals

Scanning Electron Microscope (SEM)

David C. Bell

Scanning Electron Microscopy (SEM)

What is an SEM?

Types of Electron Gun

- Two main types;
 - Thermal
 - Tungsten Filament
 - LaB₆ Filament
 - -Field Emission
 - Cold Field Emission
 - Schottky Field emission gun

The Electron Gun

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Hairpin Tungsten Filament

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

Characteristics of Sources

	Units	Tungsten	LaB ₆	FEG
Operating Temperature	K	2700	1700	300
Current Density	A/m ²	5x10 ⁴	10 ⁶	10 ¹⁰
Crossover size	μm	50	10	<0.01
Energy spread	eV	3	1.5	0.3
Stability	% / hr	<1	<1	5
Vacuum	Pa	10 -2	10 -4	10 -8
Lifetime	hr	100	500	>1000

Magnetic lens

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

Secondary Electron Detector

Scanning Electron Microscopy (SEM)

Backscattered Electron Detector

SEM: Electron Detectors

Backscattered Electron Image

Secondary Electron Image

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Brief History of SEM

- 1935 Knoll Scanning TEM
- 1942 RCA Labs, Zworykin
- 1948 Cambridge University C. W. Oatley
- 1963 Pease, SEM V became Cambridge Scientific Instruments Mark 1 Stereoscan
- 1960 Everhart and Thornley : development of the SE Detector

Why SEM ?

- Good resolution
- Large magnification range 20x 20000x or more
- Depth of field
- 3-D Information (perspective)
- Easy to use
- Easy sample preparation
- Lots of uses and applications
- Great deal of information obtainable on one instrument
- Reasonable cost (purchase and operating)
- Ubiquitous

SEM Flavors

Environmental Scanning Electron Microscope (ESEM)

ESEM : Quanta 200

•CIMS Contact : Dr. Richard Schalek

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

ESEM Example: Salt Water Diatom

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

ESEM Example: Silicon Nanowires

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

ESEM: In situ Experiments

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

SEM FAB Applications

SEM FAB Applications

Hitachi RS-3000 Defect Review SEM

Raith 150 Ultra High Precision E-Beam Lithography and Metrology System

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Focused Ion Beam System

FEI D235 DualBeam FIB/SEM

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

FEI D235 DualBeam FIB/SEM

- Focused Ion Beam (with liquid Ga source) can scan and etch
- Or with injected gas cause deposition (metals, dielectrics)
- CIMS Contact : Dr. Warren MoberlyChan

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

SEM Based Materials Analysis

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

EDX and WDS analysis

- Electron Microprobe
 - Combines EDX and WDS analysis
 - SEM Column
 - Typically Tungsten
 Filament
 - Optimized for microanalysis

Applied Physics 298r

Scanning Electron Microscopy (SEM)

EDX Spectrum and Mapping

EDX Analysis Mapping

SEM Mapping Image Ni/Fe Meteorite

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Electron backscattered Diffraction (EBSP or EBSD)

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

EBSP – Fundamentals

- SEM based technique
 - 70° tilted specimen
 - 1-10 nA , ~20 kV
- Detector
 - Phosphor + CCD camera
- EBSP
 - Kikuchi bands (planes)
 - Zones (directions)
- Orientation
 - Sub-micron resolution
 - ~0.5deg angular resolution
- Surface Effect
 - Sampling upper 30-50nm
 - Surface prep important!

Courtesy Tim Maitland, HKL Technology

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

EBSP: System Diagram

Courtesy Tim Maitland, HKL Technology

April 26, 2004

What does an EBSP look like?

$Silicon \ at \ 20 kV \qquad {\rm Courtesy} \ {\rm Tim} \ {\rm Maitland}, {\rm HKL} \ {\rm Technology}$

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

How it works - EBSP formation

- The Electron beam strikes the • specimen
- Scattering produces electrons • travelling in all directions in a small volume (the excitation volume)
- Electrons that travel in a direction • that satisfies the Bragg condition $(n\lambda = 2d_{hkl}.sin\theta)$ for a plane (hkl) are channeled \Rightarrow Kikuchi bands
- The electrons hit the imaging • phosphor and produce light
- The light is detected by a CCD • camera and converted to an image

Courtesy Tim Maitland, HKL Technology

Which is indexed... •

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

EBSP: Indexing Cycle

EBSP: Visualization of Data

General Microstructure

Deformed silica (quartz)

Courtesy of Tim Maitland, HKL Technology

Pixel map of pattern quality + crystal orientation + grain boundary location and character

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004
SEM Operating Considerations

- Effects of Accelerating Voltage
 - Sample charging
 - Resolution / Image quality
- Effects of aperture size
 - Depth of Field and Resolution
- Working distance
 - Depth of Field and Resolution
- Tilting the sample
 - Understanding the Geometry
- Effect of Probe size/current
- Astigmatism

Imaging

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Effects of Accelerating Voltage

Applied Physics 298rDavid C. BellScanning Electron Microscopy (SEM)April 26, 2004

Effects of Accelerating Voltage: Example

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Sample Interaction Volume with Voltage

David C. Bell

Working Distance

David C. Bell

Working Distance: Example

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

Aperture Size

Tilting the Sample

- Important
- Understand the geometry of the sample
- Understand the geometry of the detector

Tilting the Sample / Geometry

- Tilting is important
- Two or Three different tilt angles
- Pull back to capture overall view and to understand geometry

Applied Physics 298r

David C. Bell

Imaging Considerations

- Seeing is not believing
- Image interpretation is important
- Beware of image artifacts
- Beware of sample/detector geometry effects
- Beware !!!

Demonstration: Using Web SEM

JEOL 5910 SEM running Web SEM from CMSE MIT

Specimen

Courtesy of Anthony J. Garratt-Reed

David C. Bell

Scanning Electron Microscopy (SEM)

SEM Instrument Considerations for Nanostructure Imaging

- In the lens secondary electron detector
- Field emission electron gun
 Cold emission (Better ?)
- High vacuum or UHV system – Minimize contamination

In the Lens SE Detector

In the Lens SE Detector Example

Standard SE Detector

In Lens SE Detector

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

51

4mm

In the Lens SE Detector Example

Standard SE Detector

In Lens SE Detector

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

In-Lens SE Detector Example

Standard SE Detector

In Lens SE Detector

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Some Examples SEM Imaged Nanostructures

- Materials Comparisons
- Structure Examination
- Silicon Nanowires
- Coatings
- Fabrication
- Nano Machines
- Nano Arrays
- Carbon Nanotubes

Example: Materials Comparisons

3DOM: Composition: CaO (20 mol%) - P2O5 (4 mol%) - SiO2 (76 mol%)

Sol-Gel Process

Diatom: Stephanodiscus Niagarae (ME184) Composition: SiO2 + small Ca

Phase Separation Process

Example: Diatoms

Stephanodiscus Niagarae (ME184)

Sample Courtesy of Mark Edlund, St. Croix Watershed Research Station

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Example: Si Nanowires

Scanning Electron Microscopy (SEM)

Example: Si Nanowires

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

Example: Optical Coatings Au on SiC

Courtesy Mike Coy JEOL

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Example: Cross Sections

Example: Nano Array

Courtesy Mike Coy JEOL

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Example: Nano Array

62

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Example: Nano Machines Failure Mode Analysis

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

Example: Chromite

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

Example: SnO on Sn

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Example: Carbon Nanotube Spheres

200µm 100X

10µm 2000X

David C. Bell

Scanning Electron Microscopy (SEM)

Example: Nanotube Spheres

2µm 12000X

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Example: Carbon Nanotubes

Courtesy Mike Coy JEOL

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

Example: Carbon Nanotubes

Courtesy Mike Coy JEOL

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

Example: Carbon Nanotubes

Courtesy Mike Coy JEOL

Applied Physics 298r

David C. Bell

Scanning Electron Microscopy (SEM)

April 26, 2004

SEM : Nanostructures Imaging Checklist

- General SEM Considerations
 - Low beam voltage
 - Small apertures
 - Small working distance
 - Minimal sample coatings (if any)
 - Precise adjustment of astigmatism
- Instrument Considerations
 - In the lens SE Detector
 - Cold Field Emission Electron Gun
 - High Vacuum or UHV System

CIMS SEM Instruments

LEO A SEM

LEO B SEM

Cameca Microprobe

Quanta 200 ESEM

FEI D235 Dual Beam FIB/SEM

Scanning Electron Microscopy (SEM)

April 26, 2004

72

Applied Physics 298r

David C. Bell
Acknowledgements

- Richard Schalek, CIMS
- Warren MoberlyChan, CIMS
- Dave Lange, CIMS, EPS
- Yue Wu and Carl Barrelet, Charles Leiber Group
- Anthony J. Garratt-Reed, MIT
- Mike Coy, Verne Robinson, JEOL
- Tim Maitland, HKL Technologies

