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Typical Nanofabrication Steps  
µ -H

Substrate

Radiation (Exposure)

Mask (Alignment)

Photoresist (spin-Coating)

Thin Film (Deposition)
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Developer
(Development)
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Etch (wet or Dry)

(Pattern Transfer)
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Stripper
(Remove Resist) 
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Nanofabrication and Its Trend 
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Typical Technologies 
Involved in 
Nanofabrication

• Thin Film Deposition

• Patterning 

– Lithography

• Film Modification

– Etching

Why smaller? – faster, cheaper, more functionality, and new phenomenon
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Outline

I. Lithography
• Optical Lithography
• E-beam Lithography

II. Thin Film Deposition
• Physical Vapor Deposition (PVD)
• Chemical Vapor Deposition (CVD)

III. Etching
• Wet Etching
• Dry Etching
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Optical Lithography

I.  Radiation System
(Aligner)

II.  Mask

III.  Photoresist
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Three Types of Aligners

Contact Printing Proximity Printing Projection Printing

~ 5X 
Reduction

Optical
System

Gap

Light Source

Optical
System

Mask
Resist

Substrate
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Characteristics of a Microlithography System

Resolution
The resolution of an optical system is its capability to distinguish closely 
spaced objects.  For a microlithography system, resolution defines the 
minimum linewidth or space that the system can print.

Registration Capability
A measure of degree to which the pattern being printed can be fit (aligned) 
to previously printed patterns

A microlithography exposure system is also called “aligner”

Dimensional Control
Ability to produce the same feature size with the same tolerance and 
position accuracy across an entire wafer and wafer-to-wafer

Throughput
The time to complete a print
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Resolution – Diffraction of Optical System
Fraunhofer Diffraction
(far field - project system)

α
dR

Entrance
Aperture

Image
Plane

Point
Source

λ

Airy DiskWhat is the smallest distance, 
R, an optical system can 
resolve?

Rayleigh suggested that a 
reasonable criterion was that 
the central maximum of each 
point sources lie at the first 
minimum of the Airy disk

Rayleigh Criterion

NA
R λ61.0= )sin(αnNA =Where: Numerical Aperture

-- System’s capability to 
collect diffracted light
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Resolution Limit of Project Aligner

NA
Kb λ
12 =

b b k1 ≈ 0.3 – 0.9
depends on the lithography 

system

Resolution Improvement 
Method

• Decrease λ
• Increase NA
• Reduce K1
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Reduce Wavelength

Microlithography
Technology

Trend
70 nm
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Depth of Focus (DOF) Requirement

DOF - The range over which there are clear optical images

222
1
NANA

KDOF ∝=
λ

DOF decreases much faster than that of resolution when NA increase!

Why need to meet DOF Requirement?
• Substrate is not flat (~ 10 um across a wafer)

• There are previously fabricated patterns on the wafer (~ um)

Example
K2 = 0.5, λ = 435 nm (G-line), NA = 0.6, DOF ~ 0.6 um!
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DOF and Practical Resolution
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Off-Axis Illumination

High-order diffracted light is lost Some high-order diffracted light is 
captured
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Resolution of Contact and Proximity Printing
– Fresnel Diffraction (near filed)

Contact Printing: dkb λ5.02 =

d
sdkdskb 215.0)5.0(2 +⋅=+= λλProximity Printing:

Example

λ = 435 nm (g-line)
d = 0.5 µm
s = 10 µm

b (contact) ~ 0.5 µm
b (Proximity) ~ 2.6 µm

λ = exposure wavelength
d = resist thickness
2b = line-space pitch resolution
s = mask-resist spacing
k ~ 3
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Comparison of Three Systems

• Expensive
• High resolution
• Low mask contamination
• High throughput

Projection

• Poor resolution• Low mask contaminationProximity

• Mask contamination and 
damage

• Defects impact

• High resolution
• Low cost
• High throughput

Contact

ConsProsSystem
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Mask Components
Substrate Requirement
• High transmission at exposure wavelength
• Small thermal expansion coefficient
• High degree of flatness
• Low non-linear effect

Common material: Quartz, fused-silica or 
borosilicate glasses

Opaque Material Requirement
• No transmission at exposure wavelength
• Good adhesion to the substrate
• High degree of durability

Choice of material:  Chrome, emulsion and ion 
oxide

Substrate

Opaque Material
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Mask Polarity

Dark-Field (negative) Grating Clear-Field (Positive)

Dark-Field Mask:
• Less adjacent/background exposure

• Less defect impact
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Optical Proximity Correction (OPC)

Without OPC

With OPC
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Phase-Shift Mask (PSM)

λ/2 phase shift

• Reduce Linewidth
• Improved MTF

Destructive
interference

No phase shift

Constructive
interference

Intensity

Amplitude

• Reduced MTF
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Example of PSM
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Components of Photoresist

Conventional optical photoresist has three components:
1) Matrix material

2) Sensitizer
3) Solvent

Sensitizer
• Also called inhibitor

• Photoactive compound (PAC)

• Insoluble without radiation - preventing resist to be dissolved

• Take photochemical reaction upon exposing to light, transferring

from dissolution inhibitor to dissolution enhancer
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Matrix and Solvent

Matrix Material
• Also called resin

• Serves a binder

• Inert to radiation

• Dissolves fast in developer

(~ 150 A/s)

• Provides resistant to etchers

• Provides adhesion to the 

substrate

• Contributes to the mechanical 

properties of the resist

Solvent
• Keep photoresist in 

liquid state

• Allows spin coating of 

the resist

• Solvent content 

determines resist’s 

viscosity and hence the 

its thickness
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Function of PAC 

Dissolution Enhancer1000 – 2000 A/s
Matrix + Sensitizer

with Radiation

Dissolution Inhibitor10 – 20 A/s
Matrix + Sensitizer
without Radiation

NA150 A/sMatrix

Function of PAC
Dissolve Rate
in Developer

Material

Differential solubility before and after exposure:

100 : 1
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Positive and Negative Photoresist

Positive Resist
• The solubility of exposed 

regions is much higher than the 
unexposed region in a solvent 
(called developer)

• Produces a positive image of 
the mask

Negative Resist
• The solubility of exposed 

regions is much lower than the 
unexposed region in developer

• Produces a negative image of 
the mask

Mask

Resist
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Comparison of Positive and Negative Resists 

Lift-off

Profile

Backing

Adhesion

Exposure 
Speed

Cost

Rinse

Mask Type

Developer

Resolution

Property

3-4 times faster (+)

CheaperMore Expensive

Better

In Nitrogen (-)In air (+)

Overcut (-)Undercut (+)

In solvent (Methyl Ethyl Ketone ) (-)In Acetone

In solvent (n-Butylacetate) (-)In Water (+)

Temperature non-sensitive (+)Temperature sensitive (-)

Clear-Field Mask: higher-defectDark-Field Mask: lower-defect

Low (~> 1um)High

Negative PhotoresistPositive Photoresist
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Resist Response Curve
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0.8

D0 – Initial dissolution dose Df – 100% dissolution dose

Ideally,  1) Df ~ D0,  2) Small Df
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Response Curve vs. Resist Profile

The slop of the response curve determines:
• Resolution (minimum linewidth)

• Resist wall angle
• Linewidth control 
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Contrast 





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


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log

1

D
Df

γ

Contrast (γ)
= the slop of the response curve
– ability of resist to distinguish 

between light and dark 
regions

3 ~ 65 ~ 10γp

1 ~ 22 ~ 3γn

DUV UVResist
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Surface Reflection – Standing Wave
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Surface Topographic Effect

Resist

Mask

CrCr

Oxide Metal

Imagine control is a problem for surface with significant 
topographic non-uniformity



Applied Physics 298r 34 E. Chen (4-12-2004)

Surface Effect Elimination

Standing Wave
• Substrate anti-reflection coating (ARC)

• Add unbleachable dyes to resist

• Post baking after exposure (before development)

• Multi-wavelength

Topographic Non-uniformity
• Substrate palanarization, e.g. CMP

• Planarized photolithography process
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Tri-Layer Resist Process

Mask

Cr

ARC

Resist
Hard Mask (SiO2)

Planarization

Oxide Metal
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Tri-Layer Resist Process

ARC

Resist

Reactive Etching

Hard Mask (SiO2)

Planarization

Oxide Metal
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Tri-Layer Resist Process

ARC

Resist

ARC

Reactive Etching

Hard Mask (SiO2)

Planarization

Oxide Metal
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Adhesion Improvement and HMDS 

Problems Associated with Poor 
Resist Adhesion

• Resist peel off from the 
substrate

• Severe undercut during wet etch
• Loss of resolution

Typical Solutions
• Substrate dehydration bake

• Use adhesion primer, e.g. HMDS

HMDS (Hexamethyldisilazane)

Application of HMDS
• Particular helpful for SiO2 surface
• Only monolayer is necessary

Two Typical Process
• Spin coating: 3000 – 6000 rpm for 20 -30 s
• Vapor priming: in vapor chamber for ~ 10 min
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Typical Lithography Process Steps (S1800)
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Advanced Lithography Technology

• E-Beam Lithography

• X-Ray Lithography

• Focused Ion Beam Lithography

• Alternative Lithography
• Soft-lithography
• Imprinting lithography
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Lithography
Technology

Node

70 nm
65 nm

250 nm
180 nm
150 nm
130 nm
110 nm
90 nm

300 nm
350 nm
420 nm

45 nm

500 nm
Hg g-Line 
(435 nm)

Hg i-Line 
(365 nm)

KrF Laser + PSM 
(248 nm)

ArF
+ PSM

(193 nm)

F2 Laser
(157 nm)

E-Beam (5 nm) X-Ray (0.01 - 1 nm) Ion-Beam (0.1 nm)

75 80 85 90 95 00 05 10
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Electron-Beam Lithography (EBL)

General Characteristics
• Diffraction is not a limitation on resolution
• Resolution depends on beam size, can reach ~ 5 nm
• Two applications:

• Direct Writing 
• Projection (step and repeat)

• Issues:
• Throughput of direct writing is very low – research tool or low pattern 

density manufacturing
• Projection stepper is in development stage (primarily by Nikon). Mask 

making is the biggest challenge for projection method
• Back-scattering and second electron result in proximity effect – reduce 

resolution with dense patterns
• Operate in high vacuum (10-6 – 10-10 torr) – slow and expensive
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Schematic of E-Beam System

Electron Emitter

1st Condense Lens (Electrostatic or magnetic)

Blanking Electrode

2nd Condense Lens

Beam Limiting Aperture

Deflector

Final Lens

Substrate



Applied Physics 298r 44 E. Chen (4-12-2004)

Spherical Aberration

Beam blur ∝ α3

e-

α

Electron Lens
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Coulomb Interaction

Boersch Effect Loeffler Effect

e-

e-
e- e-

e-

e-

e- e-

• Electrons repel each other in the 
beam direction

• Causes energy spread among 
electrons

• Result in chromatic aberration

• Electrons repel/collide each other in the 
radial direction

• Causes trajectory change and energy 
spread among electrons

• Result in chromatic as well as spherical 
aberration



Applied Physics 298r 46 E. Chen (4-12-2004)

Beam Size (d)

2222
dcsg ddddd +++=

M
dSourceVirtuald v

g =)(2 (dv - Source size, M – demagnification)

32

2
1)( αss CAberrationSphericald = (Cs – spherical aberration, α – beam convergence angle

Cs ∝ f (focal length) )

b
cc V

ECAberrationChromaticd ∆
= α)(2 (Cc – chromatic aberration, ∆E – electron energy spread, 

Vb – electron acceleration voltage)

)(2.1 nm
Vb

=λ
α
λ6.0)(2 =LimitnDiffractiodd (electron wavelength)

For High Resolution:
M,   Vb,   ∆E,   f

What about α?
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Resolution vs. Convergence Angle

Vb = 30 KV
∆E = 1.5 eV
Cs = 60 nm
Cc = 40 nm
dv = 20 nm
M =5

DOF = d / α
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Electron Source

Field Emission

< 10-9

Gun
Vacuum (torr)

Filament
Temperature

Energy
Width (eV)

Brightness (B)
(A/cm2Sr)

Gun Material
Working
Principle

Room0.2 – 0.5109 – 1010W
Electron 

Tunneling in 
High field

10-7 - 10-82000 – 3000K2 - 3~ 106LaB6

Thermionic Emission

10-5 - 10-6

Gun
Vacuum (torr)

Filament
Temperature

Energy
Width (eV)

Brightness (B)
(A/cm2/Sr)

Gun Material
Working
Principle

~ 3000K2 - 3~ 105W
Electron 

Emission at 
High Temp.
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Electron Scattering in Resist and Substrate

e-

Resist

Substrate

Forward
Scattering (small angle)

Secondary electrons

Back Scattering
(large angle)

The scattered electrons also expose the resist!
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Scattering Energy Distribution
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Proximity Effect

Df

MTF is greatly reduced at high pattern density
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Proximity Effect Correction

• Use thin resist

• Use thin substrate

• Adjust acceleration voltage

• Split pattern into several writings using different 

doses

• Adjust pattern size and shapes (remember diffraction 

correction in mask engineering?)

• Adjust dose level to compensate scattering
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Proximity Correction – “Ghost” Exposure

1 Multiple Defocused BeamWithout “Ghost”

2
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Raith-150 EBL System at CIMS

Specification
• Direct Writing and SEM system

• Thermal assisted field emission (LaB6)

• Acceleration voltage range:  200 – 30KV

• Probe Current Range:   5 pA -20 nA

• Field Size: 0.5 – 1000 µm

• Beam Size: 2 nm @ 30 KeV

• Lithography Resolution :    < 20 nm

• Field Stitching Capability:   < 60nm

• Maximum wafer size: 6”

• Writing speed: 10MHz

• Load locked


