Harvard

Visualizing cellular entry of single viruses & folding of single enzymes

Single Molecule Experiments ⇒ Complex Dynamics

Non-accumulative intermediates

Multiple Pathways

Spontaneous transition

Folding and function of RNA enzymes

Influenza infection

Single Virus Investigation

Single Virus Investigation

Single Virus Investigation

• Viruses are transported in three stages.

Passive transport in cells

Diffusion

 $\langle \Delta \mathbf{r}^2 \rangle = \mathbf{D} \Delta \mathbf{t}$

Active transport in cells

 $\langle \Delta \mathbf{r}^2 \rangle = \mathbf{a} \Delta \mathbf{t} + \mathbf{b} \Delta \mathbf{t}^2$

Active transport in cells

$\langle \Delta \mathbf{r}^2 \rangle = \mathbf{a} \Delta \mathbf{t} + \mathbf{b} \Delta \mathbf{t}^2$

Stage I

• Virus transport is actin-dependent.

Stage II

• Viruses are transported by dyneins on microtubules.

Viruses are transported by both plus- and minusend-directed motors on microtubules.

Endocytic Acidification

• Initial acidification occurs after stage II movement.

Endocytic Acidification

Both acidification processes occur after stage II movement!

Viruses stimulate ccp- formation.

Viruses move to existing ccps.

Endocytosis Pathways

Pinocytosis

Clathrinmediated endocytosis (~120 nm) Caveolinmediated endocytosis (~60 nm) Clathrin- and caveolin-independent endocytosis (~90 nm)

CCPs and Viruses

CCP-dependent Endocytosis

Rust, Lakadamyali, Zhang, Zhuang

• Virus binding induces the formation of CCP.

CCP-independent Endocytosis

Virus can be endocytosd via a clathrin-independent pathways.

Endocytosis of Influenza

Via clathrin- and caveolinindependent pathway

Folding and function of RNA enzymes

• Why are RNA enzymatic reactions slow?

How do protein cofactors help RNA enzymes?

Hairpin Ribozyme

Proposed Catalysis Scheme

Conformation transitions are rate-limiting.

Zhuang et al, Science, 296, 1473 (2002); Bokinsky et al, PNAS, 100, 9302 (2003)

FRET

Fluorescence Resonance Energy Transfer (FRET)

Hairpin Ribozyme --- FRET System

Zhuang et al, Science, 296, 1473 (2002); Bokinsky et al, PNAS, 100, 9302 (2003)

Hairpin Ribozyme --- FRET System

Zhuang et al, *Science*, 296, 1473 (2002); Bokinsky et al, *PNAS*, 100, 9302 (2003)

Complex Structural Dynamics

Complex Structural Dynamics

Zhuang et al, *Science*, 296, 1473 (2002); Bokinsky et al, *PNAS*, 100, 9302 (2003)

Complex Structural Dynamics

Very complex conformational dynamics!

Zhuang et al, Science, 296, 1473 (2002); Bokinsky et al, PNAS, 100, 9302 (2003)

Why RNA Enzymes?

• What are the capability and limitation of RNA enzymes?

How do protein cofactors help RNA enzymes?

An RNA-protein system

- > 7mM Mg²⁺ : No activity
 - 40mM Mg²⁺: moderate activity
 - 40mM Mg²⁺ + CBP2 : full activity

BI5 group I intron

An RNA-protein system

An RNA-protein system

>7mM Mg²⁺ + CBP2

Bokinsky, Nivon, Zhuang

Conclusions

RNA has complex and rugged energy landscape.

Structural dynamics can be a significant rate limiting mechanism for the RNA's enzymatic reaction.

The protein cofactors significantly alter the structural dynamics of RNA.

Acknowledgements

Virus work

Melike Lakadamyali Michael Rust Hazen Babcock Chen Chen Feng Zhang Christine Payne

RNA work

Greg Bokinsky Lucas Nivon Tim Blosser Shixin Liu Collaborators: Nils Walter (U. Mich.) Kevin Weekş (UNC)